
Technologies Carbon Capture and Storage (CCS)

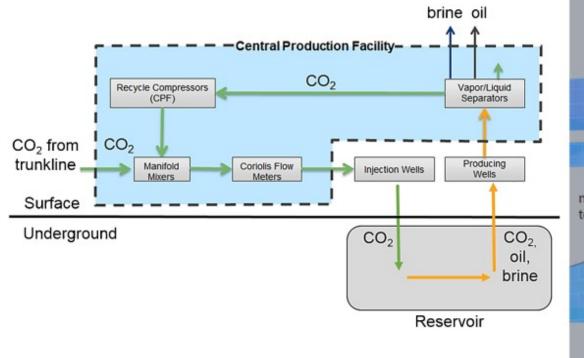
doc. Ing. Jan Hrdlička, Ph.D.

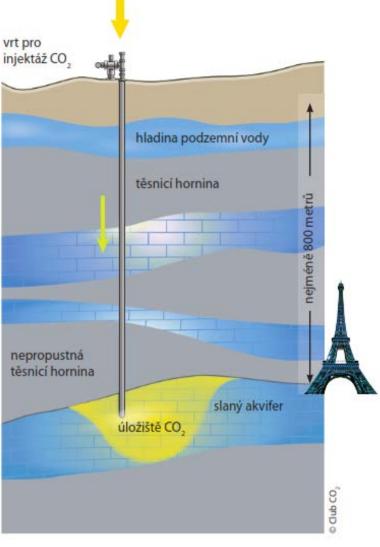
Department of Energy Engineering

WHY CAPTURE AND STORAGE OF CO₂?

- there is an opinion that humankind-produced CO₂ (and increase of its atmospheric concentration) is a cause of so-called global climate change or global warming
- major CO₂ sources: fossil fuel combustion, industry (steel, cement), crude oil refining
- > 1860-2010 atmospheric concentration has risen from 300 to 400 ppm
- > CCS currently does not belong into priorities of energy and climatic policy
- Actual State Energy Conception expects a role for CCS after 2040 and recommends a support for CCS research

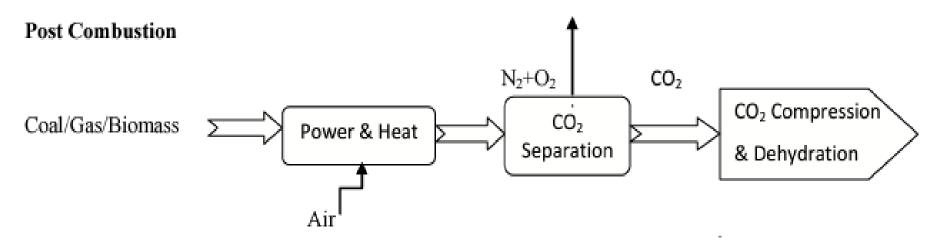
CCS technologies in general


- 3 TECHNOLOGIC PARTS: capture, transport, storage (alternatively CCU – utilization)
- CAPTURE: 3 main technology groups post-combustion, pre-combustion and oxyfuel combustion
- TRANSPORT: gaseous or liquid, different pressures and temperatures according to economic effectiveness; longer <u>distances</u> – pipeline transport in gas phase, ship transport in liquid phase; <u>shorter distances</u> – railway transport in liquid phase
- STORAGE: <u>saline aquifers</u> porous rocks containing saline water; <u>exploited oil and gas fields</u> – EOR; alternative options – deep sea hydrates, some specific rocks (e.g. basalt)


CCS technologies in general

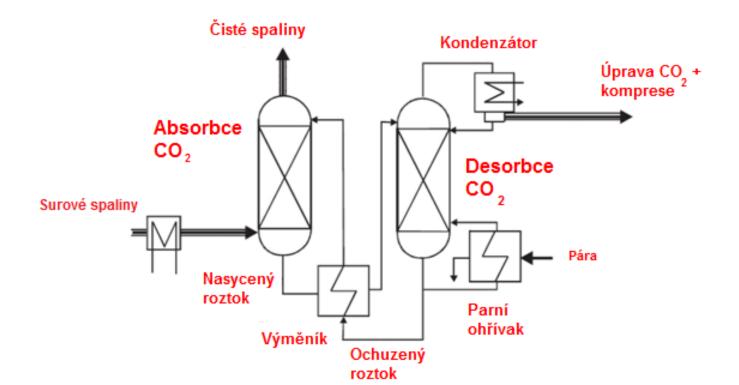
STORAGE: CO₂ in time (100-1000 years) reacts with surrounding environment to form new minerals

> UTILIZATION:


- EOR – enhanced oil recovery (and simultaneous storage)

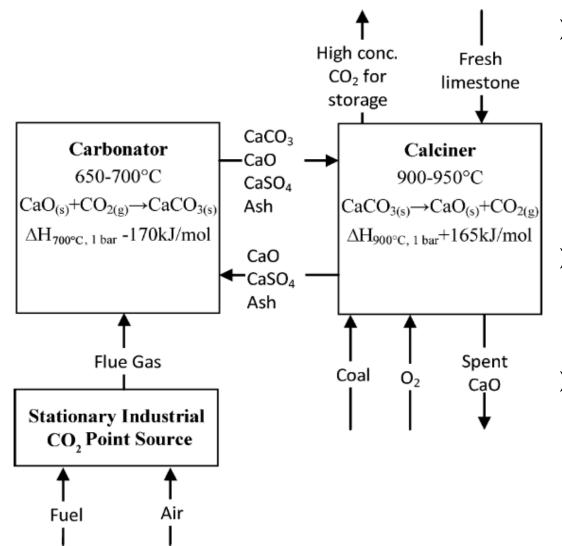
POST-COMBUSTION CAPTURE

- \geq = separation of CO₂ after a combustion process has been completed = capture of CO₂ in a low concentration from large gas flows
- > 250 MWe unit (NW Bohemian lignite coal) produces approx. 770 thousand Nm³/h of flue gas with CO₂ concentration approx. 14 %


POST-COMBUSTION separation processes

Technology	ology Principle			
Absorption	 Amine scrubbing, e.g. MEA or DEA NH₃ – ammonia scrubbing Alkaline solvents, e.g. NaOH 			
Adsorption	 Ca-based sorbents, e.g. limestone – Ca-looping Alkaline carbonates, e.g. Na₂CO₃ Special sorbents and molecular sieves, e.g. zeolites or active carbon 			
Membrane separation	 Polymeric membranes Inorgania and hybrid membranes 			
Cryogenic separation	2) Inorganic and hybrid membranesSeparation of CO₂ by freezing			

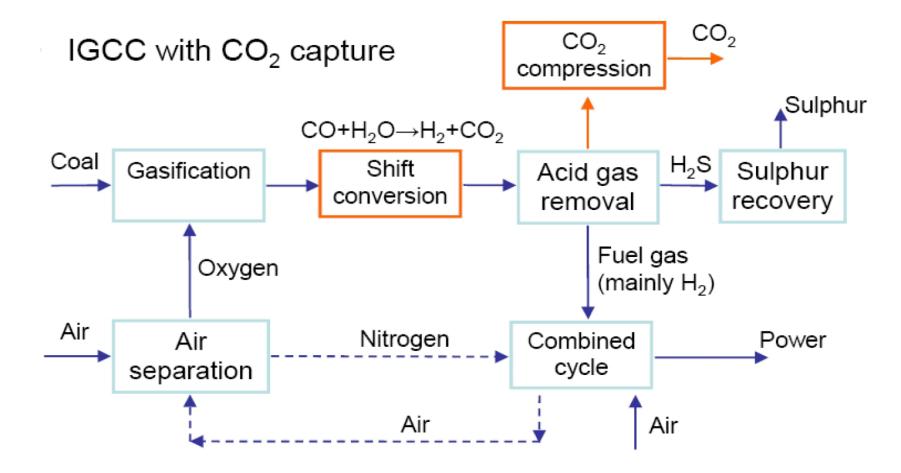
MEA SCRUBBING


- Idemo unit SaskPower Boundary Dam power plant, Canada
- Flue gas after deNOx and deSOx, regeneration in desorber; compared to ammonia: (+) higher absorption temperature (15°C); (-) lower capacity, solvent degradation

 $HOCH_2CH_2 - NH_2 + CO_2 + H_2O \rightarrow HOCH_2CH_2 - NH_3^+ + HCO_3^-$

Ca-looping

> dual CFB principle

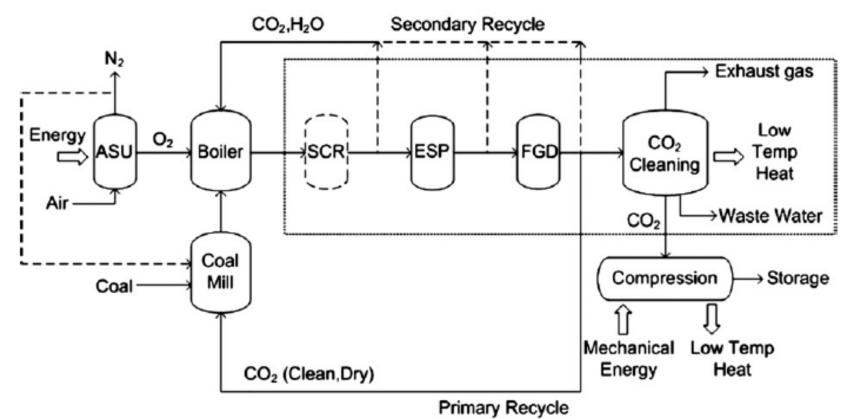


Ca-looping application in a conventional power plant means building a new source of about half thermal input in oxyfuel mode

- (+) proven CFB technology, cheap sorbent, recoverable energy;
- (-) oxygen consumption, plant size, lower capture ratio, electricity need for driving the circulation of solids

PRE-COMBUSTION capture

- based on fuel gasification, conversion of CO to CO₂ and subsequent separation, product is H₂
- hydrogen is used in conventional IGCC


PRE-COMBUSTION capture

- Water-gas shift: two-step conversion of CO to CO₂; catalytic process (ZnO/Al₂O₃), LTS 150-300°C, HTS 350-600°C
- CO₂ is separated using an AGR (acid gas removal) technology – either with acid gases (WGS before separation) or stand-alone (WGS after separation)

Procedure	Process name	Specification		
Absorption (no chemical reaction)	Selexol/Coastal AGR	Solvent mixture of dimethyl ethers and propylene glycol (DEPG); temperature 20°C		
	Rectisol/Ifpexol	Solvent methanol, sub-cooled -20 to -60°C (IGCC Vřesová)		
	Purisol	Solvent N-methyl-pyrollidon (NMP), chilled to-15°C		
	FluorSolvent	Solvent propylen-carbonate; chilled to -18°C		
Absorption with chemical reaction	MEA	Solvent mono-etanolamine		

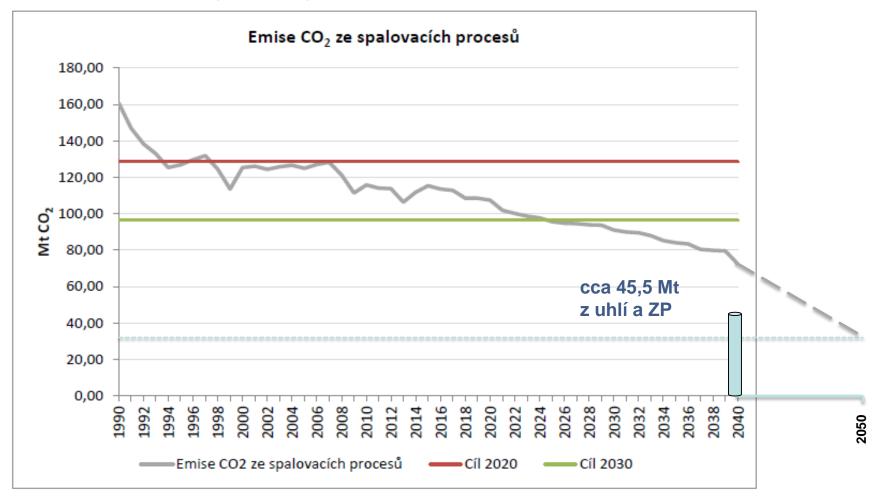
OXYFUEL COMBUSTION

- technologically most simple capture combustion of a fuel with pure oxygen, output is concentrated CO₂+H₂O vapor (+minor pollutants)
- ➤ (+) simple technology, requires "only" ASU construction; (-) purity of output CO₂, concentration lowered by false air intake and oxygen excess; corrosion and deposits; different dimensioning of heat exchanging surfaces

COMPARISON OF CCS TECHNOLOGIES –

250 MWe reference, 9.5 MJ/kg, 90 % capture

Parameter		Current plant	NH ₃ scrub	Oxyfuel	Solid adsorbent/ zeolite	Ca-looping	Pre- combustion/ Rectisol ^{*)}
El. out brutto	MWe	250	238	262 **)	245	354	272
Fuel consumption	t/h	214	214	217	214	369	99**)
Internal consumption	MWe	24	75	94	47	123	41
CO ₂ production	t/h	211	211	216	211	211+113	211
CO ₂ capture	t/h	0	190	190	158	297	201
CO_2 to air	t/h	211	21	26	53	27	10
El. out netto	MWe	226	163	168	198	231	231
Electric efficiency	%	38.4	28.12	28.53	33.73	23.01	39.75
Efficiency decrease	p.b.	0	10.87	10.46	4.77	15.39	


*) coal SD, calorific value 16,5 MJ/kg **) fuel pre-dried to 11% - WTA drier

Thank you for your attention!

CCS in the Czech Republic

Graf č. 33: Emise CO2 ze spalovacích procesů

Pozn.: Pro emise CO₂ nejsou stanoveny cíle pro jednotlivé země EU, ale pouze cíl pro EU jako celek. Uvedené linie jsou tedy vypočteny z hodnot cíle EU snížení emisí do roku 2020 o 20 % oproti roku 1990 a cíle EU snížení emisí do roku 2030 o 40 % oproti roku 1990 vztažených k hodnotě emisí ze spalovacích procesů na území České republiky.